Special Fractional Curve Pairs with Fractional Calculus
نویسندگان
چکیده
In this study, the effect of fractional derivatives, whose application area is increasing day by day, on curve pairs investigated. As it known, there are not many studies a geometric interpretation calculus. When examining analysis curve, Conformable derivative that fits algebraic structure differential geometry used. This examined with help examples consistent theory and visualized for different values derivative. The difference study from others use derivatives integrals in calculations. Fractional calculus has applications fields such as physics, engineering, mathematical biology, fluid mechanics,signal processing, etc. have become an extremely important new method solving various problems sciences.
منابع مشابه
Fractional vector calculus for fractional advection–dispersion
We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection–dispersion equation for flow in heterogeneous porous media. r 2005 Elsevier B.V. All rights reserved.
متن کاملFractional vector calculus and fractional Maxwell’s equations
The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using ...
متن کاملCalculus of variations with fractional derivatives and fractional integrals
We prove Euler-Lagrange fractional equations and sufficient optimality conditions for problems of the calculus of variations with functionals containing both fractional derivatives and fractional integrals in the sense of Riemann-Liouville.
متن کاملFractional-calculus diffusion equation
BACKGROUND Sequel to the work on the quantization of nonconservative systems using fractional calculus and quantization of a system with Brownian motion, which aims to consider the dissipation effects in quantum-mechanical description of microscale systems. RESULTS The canonical quantization of a system represented classically by one-dimensional Fick's law, and the diffusion equation is carri...
متن کاملTempered fractional calculus
Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International electronic journal of geometry
سال: 2022
ISSN: ['1307-5624']
DOI: https://doi.org/10.36890/iejg.1010311